5,809,415

27

stock query over Internet 140 to a stock quote service
provider using the ticker tape symbol passed as input data by
server 749 to the common gateway interface application.
When the response to the stock query is received, the
common gateway interface application builds a PIDL deck
that includes the data in the response to the stock query.

Upon completion of servicing the request, HI'TP server
749 converts the PIDL deck to a TIL deck and returns the
TIL deck to client module 702 using UDP in transfer
response process 863, that is connected by a dotted line to
response received check 806 in client module 702. As the
TIL deck is transferred, client module 702 stores the deck in
memory 716.

After the TIL deck is transferred, HTTP server 749 closes
the process for responding to the message from cellular
telephone 700. All the information needed by client module
702 to generate a user interface on display screen 705 and
for responding to any selection or data entry presented in the
user interface is included in the TIL deck. Consequently,
client module 702 only has to interpret the TIL deck and
interpret the user input to transmit the next message to HI'TP
server 749. The state for the HTTP server is defined in the
next message. Consequently, HTTP server 749 is stateless
because HTTP server 749 does not retain state information
concerning a response to a message after the message is
transmitted.

However, in another embodiment (not shown), a server
could retain state information concerning each interaction
with a client module. For example, if the server transmitted
a choice card to the client module, the server would retain
state information indicating that a choice was pending from
the client module. In this embodiment, when the user makes
a choice, e.g., depresses key two to indicate choice two, the
choice is transmitted to the server which in turn accesses the
URL associated with choice two. If this URL addresses
another application, the server executes that application.
Thus, in this embodiment, the server retains state informa-
tion concerning each interaction with a client module. In
view of this disclosure, those skilled in the art can imple-
ment the principles of this invention utilizing a server that
retains state information when such a client/server combi-
nation is advantageous.

Returning to the present embodiment, when the TIL deck
is received, client module 702 leaves response received
check process 806 and transfers to process first card 8§08.
However, if TCP is used instead of UDP, client module 702
upon leaving check 806 would close the virtual TCP con-
nection in transmission completed process 807. Upon clos-
ing the virtual TCP connection, processing would transfer to
process first card 808. Again, transmission complete process
807 is enclosed within a dashed line box to indicate that
process 807 is used only with TCP.

In process first card 808, client module 702 parses the TIL
deck and interprets the first card. Processing transfers from
process first card 808 to generate display process 809.

In generate display process 809, client module 702 passes
the data to be displayed in the first card to display module
712. Display module 712, in response to the data, drives the
text and images in the data on display screen 705. Generate
display process 809 transfers processing to key press check
820 through node 813. In FIGS. 8A to 8D, any circular node
with the same alphanumeric character and reference numeral
is the same node. The circular nodes are used to establish
connections between the various processes in the method of
FIGS. 8A to 8D without cluttering the figures with a number
of connection lines.

Client module 702 waits in key press check 820 for the
user to press a key on keypad 715 of cellular telephone 700.

20

25

30

35

40

45

50

55

60

65

28

In this embodiment, cellular telephone 700 is assumed to
have the capability to support two soft keys, a scroll-up key,
a scroll-down key, a previous key, a next key, and keys zero
to 9 that are configured in the standard telephone keypad
configuration. In view of the following disclosure, if one or
more of these keys are not present, one of skill in the art can
alter the method for the particular configuration of the
cellular telephone keypad, or other two-way data commu-
nication device keypad. For example, if the cellular tele-
phone included a home key, the key press processing
described more completely below would include a check
that detected when the home key was pressed and would in
turn transfer to get home URL process 801.

Briefly, the processes in FIGS. 8B to 8C, identify the key
pressed by the user, identify the action required, and then
transfer to a process that implements the action required.
Specifically, when a key on the keypad is pressed, keypad
module 711 stores an identifier for the key in work memory
716 and notifies client module 702 of the key press. Upon
receipt of the notification from keypad module 711, client
module 702 reads the storage location in work memory 716
to determine the key pressed and transfers processing from
key press check 820 to scroll key check 821.

In scroll key check 821, client module 702 determines
whether the user pressed either of the scroll keys. If a scroll
key was pressed, processing transfers to adjust display
process 822 and otherwise to display card check 823.

In adjust display process 822, client module 702 deter-
mines which of the scroll-up or scroll-down keys was
pressed. Client module 702 then sends information to dis-
play module 712 so that the current display is either scrolled-
up one line or scrolled-down one line. If the scroll key would
move the display beyond a boundary of the current card, the
scroll key press is ignored in adjust display process 822.

In response to the information from client module 702,
display module 712 adjusts the screen display on display
screen 705. Client module 702 transfers processing from
adjust display process 822 to key press check 820 through
node 813.

If a scroll key was not pressed, processing is passed
through scroll key check 821 to display card check 823.
Client module 702 takes action that depends on the particu-
lar type of card that is currently being displayed on display
screen 705. If the current card is a display card, client
module 702 passes through display card check 823 to soft
key check 828, and otherwise transfers to choice card check
824.

Assuming for the moment that the current card is not a
display card, choice card check 824 determines whether the
current card is a choice card. If the current card is a choice
card, client module 702 passes through choice card check
824 to choice key check 826, and otherwise transfers to data
key check 826.

Assuming for the moment that the current card is neither
a display card nor a choice card, the current card must be an
entry card, because in this embodiment only three card types
are defined. Thus, client module 702 does not check for an
entry card. Rather, data key check 826 determines whether
a valid data key was pressed. In this embodiment, the data
keys are keys zero to nine on the key pad, and the # key. In
other embodiments, other combinations of keys could be
defined as data keys. If the pressed key was one of the data
keys, data key check 826 transfers to process data entry 827
and otherwise transfers to soft key check 828.

In process data entry 827, client module 702 knows
whether the predictive text entry process is turned-on,
because one of the parameters on the entry card specifies

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

5,809,415

29

whether to use the predictive text entry process, as described
in Appendix I, which is incorporated herein by reference in
its entirety.

If the predictive text entry process is not turned-on, client
module 702 in process data entry 827 enters the pressed key
value in a text entry buffer in work memory 716 at the
appropriate location. Also, client module 702 sends infor-
mation to display module 712 so the value of the pressed key
is displayed in the appropriate location on display screen
705 by display module 712.

If the predictive text entry process is turned-on, client
module 702 uses the novel predictive text entry process in
process data entry 827, as described more completely below
with respect to FIGS. 9, 10A to 10T, and 11, to determine the
letter to select from the set of letters associated with the
pressed key. After the predictive text entry process deter-
mines the appropriate letter, a value representing the letter is
stored at the appropriate location in the text buffer in work
memory 716. Also, client module 702 sends information to
display module 712 so that the letter is displayed in the
appropriate location on display screen 705. Upon comple-
tion of process data entry 827, client module 702 transfers
processing through node 813 to key press check 820.

The previous description assumed that the current card
was an entry card, but if the current card is a choice card,
choice card check 824 transferred to choice key check 826.
In generate display process 804 for the choice card, each of
the choices are labeled according to information on the
choice card and some or all of the choices are displayed on
display screen 705. Thus, choice key check 826 determines
whether the pressed key corresponds to one of the choices.
If the pressed key is one of the choices, client module 702,
in one embodiment, sends information to display module
712 to indicate the selected choice. Client module 702 also
transfers from choice key check 826 through node 831 to
store identifier process 850 (FIG. 8D), that is described more
completely below. Conversely, if the pressed key is not one
of the choices, choice key check 826 transfers to soft key
check 828.

Soft keys can be specified both for a deck as a whole and
per card, i.e., a physical key on the keypad is specified as a
soft key as described more completely in Appendix 1. Each
soft key specification includes an identifier that defines the
action to be taken when the soft key is pressed.

When a soft key is specified for a deck, the soft key
remains in effect for the entire deck. However, when a soft
key is specified for a card, the card soft key specification
temporarily overrides the corresponding deck soft key
specification, i.e., the deck soft key specification for the
same physical key as the card soft key specification, while
the card is visible, i.e., displayed on display screen 705. This
override is done independently for the two soft keys. Thus,
soft key check 828 transfers processing to first soft key
check 829 if the key pressed is one of the two possible
physical soft keys. Conversely, soft key check 828 transfers
processing to next key check 840 (FIG. 8C), if neither of the
two possible physical soft keys is pressed by the user.

In first soft key check 829, client module 702 determines
whether the pressed key corresponds to the first soft key. If
the pressed key is the first soft key, check 829 passes the
active identifier for the first soft key to store identifier
process 850 through node 831. Conversely, if the pressed
key is not the first soft key, processing transfers from check
829 to second soft key check 830.

If the pressed key is the second soft key, check 830 passes
the active identifier for the second soft key to store identifier
process 850 through node 831. Conversely, if the pressed

10

15

20

25

30

35

40

45

50

55

60

65

30

key is not the second soft key, e.g., a physical key that can
be defined as a soft key was pressed but neither the current
deck nor the current card defines a soft key for that physical
key, processing transfers from check 830 to key press check
820 through node 813.

When pressing transfers to next key check 840, client
module 702 determines whether the pressed key was the
next key. If the next key was pressed, processing transfers to
display card check 841 and otherwise to previous key check
846.

If a display card is the current card, the next key is used
to move to another card in a deck, or alternatively to another
deck. Thus, display card check 841 transfers processing to
last card check 842 when a display card is the current card,
and otherwise to entry card check 843.

Last card check 842 determines whether the current card
is the last card in the deck. If the current display card is not
the last card in the deck, last card check 842 transfers
processing to read next card process 845, which in turn reads
the next card in the deck and transfers through node 812 to
generate display process 809.

If the current display card is the last card in the deck, the
deck includes an identifier that specifies the location to
transfer to from the last card. This identifier can be a URL
to another deck, to a common gateway interface program, or
an address for a card within the current deck, for example.
Thus, last card check 842 transfers through node 831 to store
identifier process 850 when the current display card is the
last card in the deck.

If the current card is not a display card but is an entry card,
display card check 841 transfers to entry card check 843. In
this embodiment, the next key is the predetermined key used
to indicate that all the data for an entry on an entry card has
been entered. Thus, if the current card is an entry card, entry
card check 843 transfers processing to store data process
844.

Store data process 844 stores the data entered in at an
appropriate location in memory that is specified in the
current entry card. Typically, the data is combined as an
argument with a URL and stored. Upon completion, store
data process 844 transfers through node 810 to create HTTP
request process 802 (FIG. 8A).

When the next key is pressed, if the current card is neither
a display card nor an entry card, the current card is a choice
card. However, as indicated above, in this embodiment
client module 702 requires that the user make a choice and
does not allow use of the next key. Consequently, if the
current card is not an entry card, entry card check 843
transfers processing through node 813 to key press check
820.

The previous discussion assumed that the next key was
pressed and so next key check 840 transferred processing to
display card check 841. However, if the next key was not
pressed, next key check 840 transfers processing to previous
key check 846. If the previous key was pressed, check 846
transfers to first card check 847 and otherwise returns
processing to key press check 820.

First card check 847 determines whether the current card
is the first card of a deck. If the current card is not the first
card, processing transfers from first card check 847 to read
previous card 849, which in turn reads the previous card and
transfers to generate display process 809 through node 813.
Conversely, if the current card is the first card, processing
transfers to home deck check 848.

If the current card is the first card in the home deck, there
is not a previous card and so home deck check transfers
processing to key press check 820 through node 813 and so

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

5,809,415

31

the previous key press is ignored. If the current deck is not
the home deck, home deck check 848 retrieves the identifier
for the previous deck and transfers through node 831 to store
identifier process 850.

Store identifier process 850 is reached through node 831
from several different points. The operations in store iden-
tifier process 850 are the same irrespective of the particular
process that transfers to process 850. In each instance, an
identifier is passed to store identifier process 850 and
process 850 saves the identifier in working memory 716.
The identifier can be, for example, a pointer to another
location in the current card, an address of another card in the
current deck, a URL to a deck stored in working memory
716, a URL to a TIL deck in TIL decks 760 on computer 743,
or perhaps, a URL to a common gateway interface program
in CGI programs 761 on computer 743. Thus, process 800
checks the stored identifier to determine the action required.

Specifically, in identifier to current deck check 851, client
module 702 determines whether the identifier is to a card in
the current deck. If the identifier points to the current deck,
check 851 transfers processing to retrieve data process 852
and otherwise to URL to local deck check 853.

In retrieve data process 852, client module 702 retrieves
the information stored at the location indicated by the
identifier from working memory 716 and processes the
information. Retrieve data process 852 transfers through
node 812 to generate display 809 (FIG. 8A) that was
described above.

URL to local deck check 853 determines whether the
identifier is a URL to a deck that is stored in working
memory 716, e.g., cached. If the deck is stored locally, check
853 transfers to retrieve local deck 854 which in turn moves
the local deck into the storage location for the current deck.
Retrieve local deck 854 transfers processing through node
811 to process first card 808 (FIG. 8A), that was described
above.

If the identifier is neither to a location in the current deck,
nor to a local deck, the identifier is a URL to an object on
computer 743. Thus, in this case, check 853 returns pro-
cessing to create HTTP request 802 through node 810.

Process 800 continues so long as the user continues to
enter and process the information provided. In this
embodiment, process 800 is terminated, for example, either
by the user powering-off cellular telephone 700, selecting a
choice or entry card that discontinues operations of client
module 702, or remaining inactive for a time longer than a
time-out period so that client module 702 shuts itself down.

To further illustrate the operations in process 800, con-
sider the following example which is returned to client
module 702 as a TIL deck in response to a HTTP request
generated by process 802. For readability, Table 2 presents
the deck in PIDL. In this example, all of the choices are for
applications on the same server. However, in another
embodiment, each URL could address any desired combi-
nation of servers.

TABLE 2

EXAMPLE OF PIDL CHOICE DECK

<PIDL>

<CHOICE>

<CE URL=http://www.libris.com/airnet/nnn>News
<CE URL=http://www.libris.com/airnet/www>Weather
<CE URL=http://www.libris.com/airnet/sss>Sports
</CHOICE>

</PIDL>

In process first card 808, client module 702 interprets the
information in Table 2 and transfers to generate display

10

15

20

25

30

35

40

45

50

55

60

65

32

process 809. In generate display process 809, client module
702 sends information to display module 712 so that the user
is presented with a list of three choices on display screen
705, i.e, a user interface for the choice card is generated:
1. News
2. Weather

3. Sports

Generate display process 809 (FIG. 8A) transfers to key
press check 820 (FIG. 8B). When the user presses the two
key on keypad 7185, key press check 820 transfers through
check 821 to display card check 823.

Since the current card is a choice card, check 823 transfers
processing to choice card check 824, which in turn transfers
to choice key check 826. Since the two key was pressed and
that key is a choice key, check 826 transfers processing to
store identifier process 850 (FIG. 8D). In process 850, client
module 702 stores the URL corresponding to two, i.e,

URL=http://www.libris.com/airnet/www

in working memory 716.

Since this URL is to an object on computer 743, process-
ing transfers through checks 851 and 853 to create HTTP
request process 802, which in turn generates the request.
When the HTTP request is transmitted to server 749, as
described above with respect to process 804, server 749 in
service request process 862 retrieves deck www from TIL
decks 760. An example of the deck is given in Table 3. Again
for readability, the deck in present herein in PIDL.

TABLE 3

EXAMPLE OF A SECOND PIDL CHOICE DECK

<PIDL>

<CHOICE>

<CE URL~=http://www.libris.com/airnet/www-1>World

<CE URL~=http://www.libris.com/airnet
/www-2>National

<CE URL~=http://www.libris.com/airnet/www-3>State

<CE URL=http://www.libris.com/airnet/www-4>Local

</CHOICE>

</PIDL>

The deck in Table 3 is transmitted to cellular telephone 700
and stored in memory 716, as described above with respect
to process 806. The choice card is processed in process 808
and displayed in process 809. As a result of process 809, the
user is presented with a list of choices:

1. World

2. National

3. State

4. Local.

When the user makes another selection, the same
sequence of processes as described above for the first choice
card is executed by client module 702, and another URL is
stored that points to a program on server 749 that retrieves
the desired weather information and generates a deck with
that information. This deck is transferred to cellular tele-
phone 700 and displayed.

As described above, if the current card is an entry card and
a key is pressed, client process 702 reaches data key press
check 826 (FIG. 8B). If the pressed key is a valid data key,
check 826 transfers to process data entry 827.

In one embodiment, process data entry 827 uses a novel
predictive text entry process for text entry. Recall that on a
typical telephone keypad, the keys are labeled with both a
number and two or three letters. For example, the two key

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

5,809,415

33

is also labeled abc. This leads to some ambiguity when using
the telephone keypad to enter text. Is the user attempting to
enter an a, b, or ¢ when the two key is pressed?

In one prior art method, two keystrokes were required to
enter each letter of text. The first keystroke identified the first
key and the second key stroke identified the specific letter
desired on the first key. For example, to enter the letter s, the
user would first press the seven key that is labeled with
letters p, r, and s. Next, the user would press the three key
to select the letter s. While this method may work well for
short sequences that consist of only three or four letters, the
method does not work well for English text. For example, if
the user has already entered th and then presses the three key
that is labeled with letters d, e, and f, almost always the
desired next letter is the letter e. Therefore, making the user
press the two key is an extra and unnecessary step.

Client module 702 of this invention utilizes a novel
predictive text entry process to reduce the number of key
strokes required to enter text using a telephone keypad, or
any similar keypad. Using this process, in most cases a
single key stroke suffices to enter a single letter.

While this embodiment of the invention is described in
terms of a telephone keypad, the principles of the invention
are not limited to only a telephone keypad. In general, the
process described more completely below, can be extended
to any keypad where a single key is used to enter two or
more letters. Further, the process is not limited to only
letters, but rather is applicable to any keypad where a single
key is used to represent two or more characters. In view of
the following disclosure, those skilled in the art can use the
principles of the predictive text entry process in a wide
variety of applications.

The system for predictive text entry includes a predictive
text entry module 901 that in this embodiment is included in
client module 702, keyboard module 711, and a letter
frequency table 902 that is loaded into memory 716, when
client module 702 is activated. Predictive text entry module
901 is used in process data entry 827 when specified by the
current entry card. Predictive text entry module 901 per-
forms routine buffer management processes, that are known
to one of skill in the art and so are not described further to
avoid detracting from the process.

Predictive text entry module 901 stores a letter entry for
each letter entered in a text buffer 903 in memory 716. In this
embodiment, letters Q and Z are assigned to the one key and
the zero key is used to enter a space, period, and comma, i.c.,
the zero key provides punctuation. However, these assign-
ments are illustrative only, and are not intended to limit the
invention to this particular embodiment.

The first letter entered is placed at the left end of the buffer
and each additional letter is placed in the left most unused
space in buffer 903. Thus, the last letter entered in text buffer
903 is the right most character. Letter frequency table 902,
sometimes referred to as a table of predictive letter entries,
is a look-up table where each entry in the look-table is
addressed by three indices. The first two indices represent
the two most recently entered letters in text buffer 903 and
the third index represents the key that was pressed. Each
predictive letter entry stored in letter frequency table 902
defines which of the letters associated with the pressed key
to use given the previous two letters. For example, since the
is a commonly occurring string, the entry in table 902
addressed by (t, h, 3) returns e, or more concisely the
predictive letter entry 2 is returned to indicate that the
second letter of the group of letters d, e, and f associated with
the three key is the predicted letter. Of course, letter fre-
quency table 902 could be altered to return more than a
single letter.

10

15

20

25

30

35

40

45

50

55

60

65

34

In this embodiment, letter frequency table 902 was
empirically generated using a collection of e-mail. Appendix
IT is a computer program listing that was used to generate
letter frequency table 902 that is illustrated in FIGS. 10A to
10T. Briefly, the computer program implements a process
that sequentially steps through the data provided and (i) for
each possible single letter determines the most likely letter
that follows for each key on the keypad; and (ii) for each
possible combination of two letters determines the most
likely letter that follows for each key on the keypad. In this
embodiment, the most likely letter is the letter having the
greatest frequency after the single letter. Similarly, the most
likely letter is the letter having the greatest frequency after
the combination of two letters. If there is a tie in the
frequency, the first letter associated with a key is selected. Of
course, other measures of likelihood could be used to
generate the entries in table 902.

Thus, in FIGS. 10A to 10T, the first of the ten columns,
i.e., the left most column, is the two letter sequence and the
first row, i.e., the top row is the keys on the key pad used to
enter text. A combination of an entry in the first column and
a key in the top row is used to select the predicted text entry.
Thus, using the example of th, this two key sequence appears
in the first column of FIG. 100. When the three key is
pressed, the letter in the row with th as the first entry and in
the column with three as the first entry, i.e., e, is retrieved.
Alternatively, if the four key is pressed, letter i is retrieved
from the table.

In this embodiment, table 902 is a buffer of two bit
numbers. Each two bit number has a value in the range of
zero to three, and the two bit number represents a predicted
letter for the pressed key. Thus, for a two key labeled with
letters A, B and C, a zero represents A; a one represents B;
and a two represents C. In general, the number of bits used
is determined by the key that represents the maximum
number of characters. In this embodiment, the maximum
number of characters represented by a key is three. The
number of storage bits required is an integer S where S is the
smallest number such that 2**S is greater than or equal to
the maximum number of characters represented by a key.

In this embodiment, three indices 10, i1, and i2 are used
generate a table index that in turn is used to access a
particular predictive letter entry in table 902 of two bit
numbers. Each letter is represented as a number, i.e., a letter
entry, with letter A being zero, letter B being a one, letter C
being a two, and so forth with letter Z being twenty-five. A
space element is assigned a space element value of twenty-
six. Thus, in this embodiment, there are twenty-seven pos-
sible characters.

Upon the initial entry to process 1100 (FIG. 11), letter
indices 10, i1, and i2 were set to twenty-six in the initial
processing of the entry card to indicate that the text buffer is
empty. Also, as explained more completely below, as each
letter of text is entered, letter indices i0 and i1 are updated
and stored in memory 716.

However, in another embodiment, an initialize indices
process is the first operation in predictive text entry process
1100. In this embodiment, for the first letter entered, letter
indices 10 and i1 are set to twenty six; for the second letter
entered, letter index i0 is set to twenty six and letter index
il is set to the value of the letter in text buffer 903; and for
all letters entered after the first two, the value associated
with next to the last letter in text buffer 903 is assigned to
letter index 10 and the value associated with the last letter in
text buffer 903 is assigned to letter index il.

Punctuation key check 1101 determines whether the zero
key was pressed, i.e., the key selected to represent punctua-
tion.

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

5,809,415

35

If the zero key was pressed, processing transfers from
check 1101 to process punctuation entry 1102. Process
punctuation entry 1102 sets index i2 to twenty-six, and sends
the space element value to display letter process 1108.
Display letter process 1108 transfers the space element value
to display module 712 which in turn drives a space in the text
entry on display screen 705. This completes the operation of
process data entry for a zero key press and so processing
returns to key press check 820.

If the zero key was not pressed, processing transfers
through punctuation key check 1101 in data entry process
1100 to key one-to-nine check 1103, i.e., to a data entry key
check. If the pressed key was any one of keys one to nine,
check 1103 transfers to set letter index process 1104 and
otherwise to rotate last entry process 1109.

In set letter index process 1104, one is subtracted from the
numeric value of the pressed key and the resulting value is
assigned to index i2 . Set index process 1104 transfers to
generate table index process 1105.

Generate table index process 1105 combines indices i0, i1
and 12 to create a table index. In this embodiment, table
index TABLE_INDEX is defined as:

TABLE_INDEX=(((i0*27)+1)*9)+i2

Upon completion of generate table index process 1105,
generate text entry process 1106, retrieves the two bit value
in the table at the location pointed to by table index
TABLE__INDEX and converts the two bit value to a letter
represented by the two bit value.

Generate text entry process 1106 transfers to update index
process 1107, which in turn stores the value of letter index
il as letter index 10; stores the value of the retrieved letter in
letter index i1; and stores the predicted letter in text buffer
903. While this step assumes that letter indices 10, and il are
stored and accessed each time in process 827, alternatively,
the last two letters in text buffer 903 can be retrieved and
assigned to indices i0 and il, respectively, as described
above.

Update index process 1107 transfers to display letter
process 1108. Display letter process 1108 sends information
to display module 712 which in turn generates the predicted
letter on display screen 705.

If the pressed key is not one of keys one to nine, i.e, is not
a data entry key, processing transfers from check 1103 to
rotate last entry 1109. Recall that data key check 826
determined whether the pressed key was one of the zero to
nine keys, or the # key. Thus, since checks 1101 and 1103
determined that keys zero to nine were not pressed, the only
key press remaining is the # key, i.e., the rotate entry key,
which indicates the user wants a letter different than the one
entered last in text buffer 903. In rotate last entry 1109, the
last character, i.e., the right most character, in text buffer 903
is replaced by the next character in the set of characters
assigned to the last key pressed before the # key was pressed.
Again, the use of the # key is illustrative only and is not
intended to limit the invention to the use of that particular
key to rotate an entry.

For example, if the last character in the text buffer 903
was a t and the # key is pressed, process 1109 changes the
t to u. If the # key is pressed again, the u is changed to a v.
Alternatively, if the last character in text buffer 903 was a u
and the # key is pressed, process 1109 changes the u to a V.
If the last character in text buffer 903 was a v and the # key
is pressed, process 1109 changes the v to a t. If index il is
stored, as the last character in text buffer 903 is rotated,
index il is updated.

Text entry in cellular telephone 700 in different languages
or contexts can be supported by using different letter fre-

20

25

30

35

40

45

50

55

60

65

36

quency tables. For example, for plumbers, the prediction
table can be based on text about plumbing procedures. For
Frenchmen, the prediction table can be based on French text.
Also, multiple letter frequency tables could be stored in
cellular telephone 700, or selectively transmitted to cellular
telephone 700, and a particular letter frequency table would
be selected on an entry card.

In addition, an entry in the table can be more that a single
letter, and thus save even more key strokes. For example, if
the text buffer contains sche then typing a 3 could return dule
rather than just d. Further, this novel method of text entry
can be utilized with other than a cellular telephone. The
method is applicable to any device that has several charac-
ters assigned to a single key on a keypad.

In the above embodiment, the English alphabet and a
space element were used as the character set. Thus, the
number 27 used in defining the table index is just the number
N of characters in the set. Similarly, the number 9 used in
defining the table index is just the number M of keys in the
keypad that represent two or more different characters.
Hence, predictive text entry method of this invention is not
limited to text and is directly applicable to any keypad where
each key represents a plurality of different characters.

In the embodiment of FIGS. 7, 8, and 9, client module 702
and server module 749 communicate over CDPD network
710. However, this architecture is illustrative only of the
principles of the invention and is not intended to limit the
invention to the particular architecture described. Client
module 702 and server module 749 can use a wide variety
of two-way data communication links to exchange resource
locators, e.g., URLs, and TIL decks. For example, the
communications link could be a switched voice circuit in
which the client module and server module communicate
using modems. Alternatively, the communications link
could be any other packet switched network, so long as there
is some way for client module 702 to get requests to server
module 749 and for server module 749 to send data back to
client module 702. Further, a special purpose server could be
used in place of HTTP server 749. For example, the prin-
ciples of this invention can be used over various data
transport mechanisms including circuit switched data and
packet switched data. These data transport mechanisms are
being defined and implemented for most of the cellular
network standards including GSM, TDMA, and CDMA.

In the configuration of airnet network 750 (FIG. 7), client
module 702 communicated directly with a server computer
743. In another embodiment, as illustrated in FIG. 5, the
two-way data communication device first communicates
with an airnet network translator 500 that in turn commu-
nicates with the appropriate server. In this embodiment, the
operation of two-way data communication devices 100, 101,
and 102 is similar to that described above for cellular
telephone 700, except the method field in the request gen-
erated in process 802 has a different form. For example,
using the same information as before, the method field in
this embodiment is:

GET http://www.libris.com/airnet/home.cgi?&cost=1 ANTP/1.0

The method field includes the full address of the server, the
expected cost of the service, and the version of the protocol
used for communicating with airnet network translator 500.
The two-way data communication device transmits the
HTTP request including the complete URL to airnet network
translator 500.

FIG. 12 is a more detailed block diagram that illustrates
the structures in one embodiment of airnet network trans-
lator 500, according to the principles of this invention. In

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

5,809,415

37

this embodiment, airnet network translator 500 is a com-
puter running under the UNIX operating system with an
interface to CDPD network 710. Such computers are well
known to those skilled in the art. Thus, herein only the
structures and processes that must be added to such a
computer are described.

Airnet network translator 500 supports internet protocol
(IP) connections over CDPD network 710 and with each
computer network with which translator 500 can interact. In
this embodiment, each of the modules in network translator
500 are processes that are executed by the processor in the
computer. Control module 1201 is a daemon that listens for
transmissions over an IP connection from CDPD network
710. When control module 1201 accepts a transmission,
control module 1201 spawns an ANT request processor
1204, which in this embodiment is a process, as indicated
above. While in FIG. 12, only one ANT request processor
1204 is shown, there is an ANT request processor spawned
for each transmission that control module 1201 accepts and
the ANT request processor remains active until the commu-
nication is terminated.

FIG. 13 is a process flow diagram that illustrates the
operation of ANT request processor 1204. This process flow
diagram considers transmissions that utilize both TCP/IP
and UDP/IP. However, the processes that are specific only to
TCP/IP are enclosed in dashed-line boxes. Upon being
spawned for a TCP/IP, in establish connection process 1300,
ANT request processor 1204 establishes a TCP connection
using a TCP module in the server with the client module
over CDPD network 710. After the connection is established
processing transfers from process 1300 to request received
check 1301.

If UDP is being used, upon being spawned ANT request
processor 1204 initiates processing in request received
check 1301. In check 1301, ANT request processor 1204
determines whether the request from cellular telephone 700
(FIG. 12) has been received and stored in memory 1210.
Memory 1210 represents both RAM and non-volatile
memory in this embodiment. When the request has been
received and stored, processing transfers from check 1301 to
retrieve data process 1302.

In retrieve data process 1302, ANT request processor
1204 retrieves information concerning the source of the
URL, i.e., client module 702 of cellular telephone 700 from
customer database 1213, and the destination specified in the
URL, i.e., the designated server, from server database 1212.
Both databases 1212 and 1213 are stored in memory 1210.
A customer record in database 1213 includes, for example,
a carrier address, e.g., an IP number, an airnet network
translator account number, billing information, and server
subscriptions. A server record in database 1212 includes a
server IP address, name, category, and class of service. Class
of service refers to the pricing of the service, e.g., basic
services, premium services, or pay-per-view services. Other
pricing schemes can be supported in other implementations.
When the information is retrieved for the server and service
specified in the URL, and for the customer, processing
transfers to valid request check 1303.

In valid request check 1303, ANT request processor 1204
determines, for example, whether client module 702, i.e., the
customer, is authorized to access airnet network translator
500; whether client module 702 is authorized to access the
server specified in the URL; whether the specified server is
available through translator 500; and whether the specified
server supports the requested service. Thus, valid request
check 1303, validates the client, the server, and the client/
server pair. Also, since an estimated cost is included in the

10

15

20

25

30

35

40

45

50

55

60

65

38

request, the status and credit limits on the customer’s
account could be checked to determine whether the esti-
mated cost is acceptable. If all of the checks are true,
processing transfers to create HTTP request process 1306.
Conversely, if any one of the checks is untrue, valid request
check 1303 passes information concerning the error to return
error process 1304.

Return error process 1304 launches a CGI program stored
in memory 1210 based on the information received and
passes appropriate information to the CGI program. The
CGI program builds an appropriate PIDL deck describing
the error and converts the PIDL deck to a TIL deck, as
described above. When the TIL deck describing the error is
complete, return error process 1304 transfers processing to
log transaction process 1315 that is described more com-
pletely below.

If all the checks in valid request check 1303 are true,
create HTTP request 1306 converts the request in memory
1211 to a request specific to the server specified, which in
this embodiment is a HTTP request. For example, for the
above request, create HTTP request process 1306 generates
a method field, such as

GET/airnet/home.cgi?&client=xyz&cost=1 HTTP/1.0

In this embodiment, the method field includes the same
information as in the embodiment described above, and in
addition, the method field includes a client identification and
the estimated cost.

After create HTTP request process 1306 is complete,
ANT request processor 1204 accesses TCP module 1203 in
establish server connection process 1307 for TCP/IP and
transfers to secure transmission check 1308 for UDP/IP. In
establish connection process 1307, a connection is made
between the server designated in the client request and the
TCP interface module (not shown) so that data can be
transmitted between airnet network translator 500 and the
server. When the TCP connection to the server is established,
ANT request processor 1204 transfers processing from
establish server connection process 1307 to secure transmis-
sion check 1308.

In secure transmission check 1308, ANT request proces-
sor 1204 determines whether the HTTP request from the
client requested a server that utilizes a protocol that supports
encryption. If such a server was requested, processing
transfers to negotiate process 1309 and otherwise to transmit
request process 1310.

In negotiate process 1309, ANT request processor 1204
negotiates an encryption technique with the server. Upon
completion of the negotiation, processing transfers from
process 1309 to encryption process 1311. In encryption
process 1311, the HTTP request is encrypted using the
negotiated encryption technique, and then processing trans-
fers to transmit request process 1310.

In transmit request process 1310, the HT'TP request is sent
from memory 1210 to the HTTP server. When the transmis-
sion is complete, ANT request processor 1204 goes to result
received check 1312.

As described above, upon receipt of the request, the HTTP
server services the request. Upon completion of servicing
the request, the HI'TP server returns either a PIDL deck or
a TIL deck to airnet network translator 500. The deck is
stored in memory 1210. If the server does not convert the
PIDL deck to a TIL deck, the translation is done by airnet
network translator 500.

When the deck is received and stored, ANT request
processor 1204 transitions from check 1312 to transmission

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

5,809,415

39

completed process 1313 for TCP/IP and to secure transmis-
sion check 1314 for UDP/IP. ANT request processor 1204
closes the TCP circuit with the server in transmission
completed process 1313. Upon closing the server TCP
connection, processing transfers to secure transmission
check 1314.

If the server utilized encryption, the deck stored in
memory 1210 is encrypted. Thus, secure transmission check
1314 transfers processing to decryption process 1316 if
encryption was used and otherwise to log transaction 1315.

In decryption process 1316, the encrypted deck is
decoded and stored in memory 1210. Also, after the
decoding, if the deck must be converted to a TIL deck, the
translation is performed. Decryption process 1316 transfer
to log transaction process 1315.

In log transaction process 1315, ANT request processor
1204 writes a description of the transaction to transaction
log 1211 in memory 1210. In this embodiment, each trans-
action record includes a customer identification, a server
identification, time required for the transaction, cost of the
transaction, and a completion code. In one embodiment, for
security purposes, each cellular telephone is assigned to only
one customer and only one account.

After the transaction is logged, processing transfers to
transmit result 1317. In transmit result 1317, ANT request
processor 1204 returns the deck to client 702. After the deck
is transmitted, ANT request processor 1204 is terminated.

In one embodiment, if an airnet network translator is fully
loaded and another transmission comes in, the translator
returns the address of another airnet network translator and
refuses the transmission. The cellular telephone transmits
the message to the other airnet network translator. In yet
another embodiment, all incoming transmissions are
directed to a router. A plurality of airnet network translators
are connected to the router. The router monitors the status of
each translator. Each incoming transmission is routed to the
least busy translator, which in turn responds to the trans-
mission and performs the necessary operations for continu-
ing communications with the client module.

In the above description of client module 702, module 702
interacted with components within the cellular telephone to
perform the various operations specified by the user. To
insulate client module 702 from the exigencies of various
cellular telephones to the extent possible, a general archi-
tecture for client module 702 is described more completely
below. This general architecture is designed to have specific
manager modules that interact with the modules described
above within the cellular telephone and to provide standard
information to the remaining manager modules within client
module 702. The manager modules with client module 702
form an interpreter that interprets TIL decks to generate a
user interface; interprets data input by the user; and inter-
prets the TIL decks so that the data input by the user is
combined with an appropriate resource locator and either a
message is sent to an appropriate server, or another local TIL
deck is interpreted by client module 702. While this embodi-
ment is for a cellular telephone, the manager modules are
generic and so are applicable to any client module in a
two-way data communication device.

This approach limits the modifications that must be made
to client module 702 to implement the principles of this
invention in a wide variety of two-way data communication
devices over a wide variety of two-way data communication
networks. Also, in the above embodiment, client module 702
supported communications and interactions over the cellular
telephone network. However, client module 702 can also
support local services on cellular telephone 700. Typical

15

20

25

30

35

40

45

50

55

60

65

40

local services includes local messages, an address book, and
preconfigured e-mail replies, or any combination of such
Services.

In this embodiment, client module 702 includes a plural-
ity of manager modules including a navigation manager
module 1401, a network manager module 1402, a TIL
manager module 1403, an archive manager module 1404, a
local manager module 1405, an event manager module
1406, a timer manager module 1407, a user interface man-
ager module 1408, a memory manager module 1409, and a
device dependent module 1410.

Navigation manager module 1401 handles card and deck
navigation as well as managing any caches. Navigation
manager module 1401 owns and manages a history list and
as well as a pushed card list. In addition, navigation manager
module 1401 functions as the main line of client module
702; does all event distribution; and supports local services.

For local services, like local message store, there are two
basic approaches that can be used. First, local services are
implemented in a CGI-like manner. Each local service has
an entry point which is called with an argument list. A TIL
deck is returned via the event manager. From that point on,
the TIL deck is processed in the standard manner. This
approach limits local services to the same constraints as
remote services. A less restrictive approach is to allow the
local service to field events instead of the standard event
loop. The local service would construct TIL cards on-the-fly
and feed them to user interface manager 1406. Note that the
local service would need to cooperate with the standard
event loop with regard to the history, the pushed card list,
and any other state that is normally managed by the event
loop. Table 4 is a listing of processes for the architecture is
for navigation manager module 1401.

TABLE 4

ARCHITECTURE FOR NAVIGATION MANAGER MODULE 1401

ProcessEvents (void);
PushLocation (void * location, Boolean forStack);
void * PopLocation (Boolean forStack);
void * CurrentLocation();
struct LOCAL__ SERVICE {
char name[50];
FUNC HandleEvent(Event * pevent);
FUNC StartLocalService(void);
FUNC StopLocalService(void);

B
static LOCAL__SERVICE localServices[]={ . . . };
STATUS HandleEvent(Event * pevent);
STATUS StartLocalService();
STATUS StopLocalService();

Routine ProcessEvents is the main entry point for event
processing in client module 702. Typical events include key
presses on the keypad, choice selection for a choice card,
text entry for an entry card, network events, and history
events. Routine ProcessEvents can be called at any time to
process an event or events. Routine ProcessEvents does not
return until all events on a queue generated by event
manager module 1406 are processed. If a local service is
running, events are distributed to the local service before
being processed by routine ProcessEvents.

The remaining routines in Table 4 are called internally to
navigation manager module 1401 and by local services.
Routine PushLocation pushes a location on the history list
and issues a request for that location. The forStack flag
indicates a stack push of local cards.

Routine *PopLocation pops a location on the history stack
and issues a request for the top location of the history stack.

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

5,809,415

41

In routine *PopLocation the forStack flag indicates that all
cards since the last stack push should be popped.

Routine *CurrentlLocation returns the current location the
current URL being displayed.

As shown in Table 4, each local service provides a number
of functions. If a local service is running, function
HandleEvent, the local service’s event handler, is called
before any processing by navigation manager module 1401.
If the event is handled by the local service, the event is not
processed any further.

Function StartlocalService is the local services start
function. Function StartLocalService is called before any
events are distributed to the local function. Similarly, func-
tion StopLocalService is the stop function for the particular
local service. Function StopLocalService is called when no
more events are distributed to the local service.

Network manager module 1402 insulates the rest of client
module 702 from the specific networking protocol used over
the cellular telephone network. Network manager module
1402 delivers requests to the server specified in the URL via
the cellular telephone network interface; segments responses
from the server for lower latency; delivers responses from
local services to navigation module 1401 via event module
1406; handles request/response cycle (e.g. cancellation,
retry strategy) with the server over the cellular telephone
network; can receive asynchronous messages from the
server; performs memory management of TIL decks; per-
forms caching of TIL decks; handles all negotiations con-
cerning protocols and server scaling with the server; handles
any encryption for information exchanged between cellular
telephone 700 and the server.

In some cellular telephone, the maximum message size is
fixed. However, for UDP and TCP messages, a more direct
interface is used that bypasses this limitation of message
passing. It is important to avoid copying network data from
memory buffer to memory buffer as such copying increases
the memory “high water mark” as well as decreases perfor-
mance. Since different cellular telephones have different
interfaces for delivering network data, network manager
module 1402 manages the network data. In this way, net-
work data is only copied from the network buffer for
long-term storage.

When a message or reply arrives, network manager mod-
ule 1402 uses event manager module 1406 to report that fact.
However, access to the data by other manager modules in
client module 702 is through a protocol that allows storage
of data in a variety of fashions on different telephones. Any
transparent, short-term caching of TIL data is handled by
network manager module 1402. Table 5 is one architecture
for network manager module 1402.

TABLE 5

SPECIFICATION FOR NETWORK MANAGER MODULE 1402

typedef short TID;

void NM__Init(void);

void NM_ Terminate(void);

TID NM__SendRequest (void *requestData, int length,
Boolean ignoreCache);

NM_CancelRequest (TID TRANSACTIONId);

NM__DataType(TID TRANSACTIONId);

NM__GetData(TID TRANSACTIONId, void *data, int
*length, Boolean *complete);

void *NM__HoldData (TID TRANSACTICNId);

NM__ReleaseData(TID TRANSACTIONId);

TID NM__StartData(int data Type, char *requestData,
int length);

STATUS NM__EndData(TID TRANSACTIONId);

10

15

20

25

30

35

40

45

50

55

60

65

42

TABLE 5-continued

SPECIFICATION FOR NETWORK MANAGER MODULE 1402

STATUS NM_SetDataLength (TID TRANSACTIONId, int
length);

STATUS NM__GrowDataLength (TID TRANSACTIONId, Int
grow);

int NM__GetDataLength(TID TRANSACTIONId);

void *NM__GetDataPointer (TID TRANSACTIONId);

STATUS NM__DeliverData (TID TRANSACTIONId);

Network manager module 1402 identifies each network
data transaction by a 16-bit transaction identification code
TID. Network manager module 1402 increments transaction
identification code TID by one for each new transaction.
Transaction identification code TID rolls over after Oxfftf.

Routine NM__Init initializes network manager module
1402 and so is called before any other calls in network
manager module 1402. Routine NM__Terminate closes pro-
cessing of network manager module 1402 and so is called
after all other calls in network manager module 1402.

Network manager module 1402 uses routine TID
NM_ SendRequest as the standard process of sending a
request to the server. Pointer *requestData in the call to
routine TID MN_ SendRequest is defined by the server
protocol. Similarly, the state, e.g., the Boolean value, of
variable ignoreCache is used to indicate whether any cached
replies should be ignored. After sending the request, this
routine returns a server transaction identification code
TRANSACTIONIA. A local service can also send a request
to the server.

When the user instructs client module 702 to cancel a
request, network manager module 1402 calls a routine
NM__CancelRequest with cellular telephone transaction
identification code TID and server transaction identification
code TRANSACTIONId. Routine NM__CancelRequest
issues a command to the server to cancel the specified
request.

‘When data are received from the network, the data can be
either a response to a request sent by routine TID
MN__SendRequest, or by a local service. Thus, in response
to receiving data from the server, network manager module
1402 generates an event that includes server transaction
identification code TRANSACTIONIA and the type of data
DATAType. For replies to requests sent by routine TID
MN__SendRequest, server transaction identification code
TRANSACTIONIA is the same as the one returned by the
matching call to routine TID MN_ SendRequest and data
type DATAType indicates that the data is a response. For
local service originated messages, server transaction ID is
new, and data type DATAType depends on whether the data
is an e-mail, pushed TIL, or another type.

After the network event is received by event manager
module 1406, and navigation manager module 1401 distrib-
utes control of the event to network manager module 1402,
network manager module 1402 users the server transaction
identification code TRANSACTIONId and the remaining
routines in Table 5 to process the data.

Routine NM__DataType is used to return the particular
data type dataTYPE, e.g, reply, MIME, server push, etc.
Routine NM__GetData sets a pointer to the data identified by
server transaction identification code TRANSACTIONId,
retrieves the length of the data, and determines whether all
the data has been received. The interface provided by this
routine allows the first part of a data stream, e.g. the first card
of a TIL deck, to be processed by client module 702 before
the rest of the deck is received.

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

5,809,415

43

Routine NM__HoldData is called before calling routine
NM _ GetData to hold the data and thus insure that the data
remains valid during processing by client module 702. If the
data is not held, the data can be deleted or moved with the
internal buffers of network manager module 1402. If the data
is held, routine NM_ ReleaseData is called after network
data has been processed to release the data.

Routines TID NM_ StartData, NM_ EndData,
NM_ SetDatalLength, NM_ GrowDatalLength,
NM_ GetDatalLength, NM__GetDataPointer, and
NM_ DeliverData are used internally by network manager
module 1402, and by local services to deliver data. By
allowing local services to use these routines, the same
buffers can be used to store both network and locally
generated data thereby reducing the amount of memory
required to support client module 702.

Routine TID NM__StartData creates a new data transac-
tion and triggers a data delivery event. Routine
NM__EndData is called when all data for the given server
transaction identification code TRANSACTIONId has been
transmitted. Routine NM__SetDatalLength sets the data seg-
ment to a given length and may cause the location of the data
to change. Routine NM__GrowDatal.ength grows the data
segment by a given length and also may cause the location
of the data to change. Routine NM__GetDatalength returns
the length of the data segment. Routine
NM_ GetDataPointer returns a pointer to the data. This
routine is preferably called before writing into the data
buffer. Also, this routine is preferably called whenever the
data’s location may have changed. Routine
NM__DeliverData can be called when at least one card has
been stored to reduce latency while the other cards are being
generated.

TIL manager module 1403 insulates the rest of client
module 702 from changes to the TIL specification. The
interface provided by TIL manager module 1403 has the
following characteristics: removes the need for parsing by
the rest of client module 702; uses cursors to avoid gener-
ating data structures on-the-fly; does not need an entire deck
to operate; and handles TIL versioning.

Each TIL deck contains a major and a minor version
number. The minor version number is incremented when
TIL changes in a way that does not break existing TIL
manager modules. The major version number is incremented
for non-compatible versions of TIL.

Each TIL deck has the same hierarchy. One embodiment
of this hierarchy is presented in Table 6. In Table 6,
indentation is used to represent the relationships of the
various hierarchical levels.

TABLE 6
TIL DECK HIERARCHY
deck

options
softkeys

options
card

options

softkeys

options

formatted text
formatted lines
entries
options
formatted line

The interface presented in Table 7 for TIL manager module
1403 is designed with the assumption that TIL is a direct

20

25

30

35

40

45

50

55

60

65

44

tokenization of PIDL as described in Appendix 1. However,
the interface does not have any dependencies on that tokeni-
zation and can support other PIDL encoding techniques.
Given the above assumption, the opaque pointers described
below are actual pointers into the TIL deck itself. A rudi-
mentary object typing scheme based on where in the deck
the opaque pointer points can be used to implement the
generic functions described below. If this object typing is not
feasible due to details of TIL encoding, the generic functions
can be replaced with specific functions.

TABLE 7

ARCHITECTURE FOR TIL MANAGER MODULE 1403

typedef char *opaque;
typedef opaque Deck;
typedef opaque Card;
typedef opaque Text;
typedef opaque Entry;
typedef opaque Option;
typedef opaque SoftKey;
typedef opaque Object;
/* Generic functions */
FirstOption(Object obj, Option *o);
/* obj is a card, softkey, entry, or deck */
GetSoftkey(Object obj, Option *o0);
/* obj is a card or deck */
GetText(Object obj, Option *0);
/* obj is a card or entry */
/* Deck functions */
SetDeck(Deck d, int length);
/* tells module which deck to use */
DeckGetCard(Card *c, int num);
-or-
DeckGetCard(Deck d, Card *c, int num);
/* Card functions */
int CardType(Card c);
CardFirstEntry(Card c, Entry *e);
CardLookupSoftkey(Card c, int num, Softkey *s);
CardIsLast(Card c);
/* Option cursor functions */
OptionNext(Option *0);
char *OptionKey(Option 0);
char *OptionValue(Option o)
/* Entry cursor functions */
/* Text (and image) cursor functions */
TextNextToken(Text *t, int *type, int *subtype,
int *length, char *data);

Archive manager module 1404 stores and retrieves long-
lived information. This information includes: data related to
the server’s location and/or required to support server scal-
ing; data related to encryption; TIL caching (transparent to
user); TIL storage (specified by user); and message storage
and retrieval (see local manager module) . Archive manager
module 1404 should support a variety of nonvolatile
memory schemes that are provided by the two-way data
communication devices.

Local manager module 1405 is an interface to local device
resources, such as local messages, address book entries, and
preconfigured e-mail replies. Local manager module 1405
should also define an abstract interface to navigation man-
ager module 1401 for use by archive manager module 1404.

Table 8 is an architecture for an interface within local
manager module 1405 to access to an address book stored on
cellular telephone 700. The name of a routine in Table 8 is
descriptive of the operations performed by the routine.

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

Copy provided by USPTO from the CSIR Image Database on 02-08-2000

